SIDE EFFECTS OF CYCLOSPORINE-A TREATMENT IN RATS: GINGIVAL OVERGROWTH AND EARLY HYPERGLYCEMIA

Orlando L. Catanzaro1,2, Lorena Calvo Lauría1, Pablo Obregon2, Emilio S. Labal1, Ricardo R. Rodríguez2

1 Department of Biochemistry- School of Dentistry, John F Kennedy University.
2 School of Dentistry and Medicine, University Del Salvador, Argentina.

ABSTRACT
Gingival overgrowth is an adverse side effect of cyclosporine A (CsA) in the treatment of transplanted patients. The purpose of this study was to evaluate the effects of CsA on new-onset diabetes mellitus and gingival overgrowth in rats, by measuring collagen, nitric oxide and microvascular permeability. Blood glucose level, collagen, nitric oxide level and vascular permeability were determined. Blood glucose level increased significantly from 6.5 +/- 0.9 for the control group to 15 +/- 1.2; 17 +/- 1.2 and 21.6 +/- 1.6 mM/L at 1, 4 or 8 weeks of CsA treatment, respectively. Collagen (ug HO Proline/mg p) increased significantly from 2.5 +/- 0.5 for the control group to 4.2 +/- 0.8, 5.9 +/- 0.6 and 7.3 +/- 0.8 at 1, 4 or 8 weeks of CsA treatment, respectively. Vascular permeability was 10.3 +/- 1.2 for the control group and 15 +/- 1; 17.2 +/- 1.3, and 22.1 +/- 2.1 ug EB/g T at 1, 4 or 8 weeks of CsA treatment, respectively. Nitric oxide level was 3.5 +/- 0.9 umol/mg P for the control group and 4 +/- 0.2, 8.2 +/- 0.9 and 11 +/- 1 for 1, 2 or 8 weeks of CsA treatment, respectively. These findings appear to indicate that the development of significant gingival changes induced by CsA is related to new-onset of diabetes mellitus during the immunosuppressive treatment.

Key words: Cyclosporine A, gingival hypertrophy, hyperglycemia, collagen.

EFECTOS COLATERALES DEL TRATAMIENTO CON CYCLOSPORINA-A EN RATAS: HIPERPLASIA GINGIVAL E HYPERGLUCEMIA TEMPRANA

RESUMEN
La hiperplasia gingival es un efecto colateral adverso del tratamiento con ciclosporina A (CsA) en pacientes transplantados. El propósito de este estudio fue evaluar el efecto de CsA en el inicio de diabetes mellitus, la concentración de colágeno, y de óxido nítrico y la permeabilidad capilar gingival. El nivel de glucosa en sangre de los animales controles fue: 6.5 +/- 0.9, en tanto que los tratados con CsA fue: 15 +/- 1.2; 17 +/- 1.2 y 21.6 +/- 1.6 mM/L a las 1, 4 o 8 semanas de CsA tratamiento, respectivamente. El colágeno (ug HO Proline/mg p) incrementó significativamente a las 1, 4 y 8 semanas de tratamiento. Los valores de permeabilidad capilar (ug AE/g T) fueron: 10.3 +/- 1.2 para el grupo control y 15 +/- 1; 17.2 +/- 1.3 y 22.1 +/- 2.1 respectivamente a las 1, 4 o 8 semanas de tratamiento con CsA. Los valores de óxido nítrico (umol/mg P) en el grupo control fue: 3.5 +/- 0.9, en tanto que los animales tratados con CsA fue: 4 +/- 0.2; 8.2 +/- 0.9 y 11 +/- 1 respectivamente. Estos resultados parecen indicar que el desarrollo de los significativos cambios gingivales inducidos por CsA está relacionado con el desarrollo de diabetes mellitus durante el tratamiento con inmunosupresores.

Palabras clave: Ciclosporina A, hiperplasia gingival, hiperglycemia, colágeno.

INTRODUCTION
One of the adverse effects of Cyclosporine A (CsA), which occurs in up 70% of the patients receiving it, is the development of gingival overgrowth. The use of cyclosporine A as an immunosuppressant has revolutionized organ transplant, which has become the management of choice for many patients with chronic and life-threatening conditions. It is not surprising that the administration of this drug is often associated with several side effects. These include nephropathy, hepatoxicity, neurotoxicity, lymphoproliferative neoplasms, and gingival overgrowth. Procedures to block islets autoimmunity in diabetes type 1 have been proposed as effective means to prevent the disease, and agents such CsA have demonstrated that immunosuppression can reduce insulin requirements in patients with recent-onset type 1 diabetes. However new-onset diabetes mellitus after organ transplantation has been recently described. The aim of this study was to determine the effects of CsA on gingival alterations and new-onset of diabetes mellitus as a risk factor for gingival enlargement.
MATERIALS AND METHODS
Male albino Wistar rats weighing 200-250 g were used. They were randomly distributed into 4 groups of 8 animals each. The experimental protocol was approved by the local Institutional Committee for Animal care and use of University del Salvador.
Group I: Control rats, received physiological saline; Groups II, III and IV: rats were injected subcutaneously with a daily dose of 10 mg Kg body weight of CsA-vehicle (olive oil) for 1, 4 and 8 weeks.

Biochemical Analysis
After 1, 4 and 8 weeks of treatment, blood samples were obtained from a tail vein for glucose measurement by reagent strips (Accu-Chek, Roche, Argentina). Gingival mucosal tissue was obtained for analytical determinations. Tissue was extracted and washed extensively with 50 mM Tris – HCl (pH 7.5) at 4 C. Tissue was drained on filter paper, weighed and homogenized in cold 10 mM Tris-HCl, pH 8.2; the homogenate was centrifuged (10.000 x g) at 4º C for 30 min and the supernatant saved for biochemical determinations. Protein was determined according to the method of Lowry15. Nitrites were determined with Griess reagent (Promega systems) according to Green et al16. Collagen was determined according to the method of Walsh et al17 with slight modification 18. To assess vascular permeability, animals received Evans Blue (EB) (2.5 %, dissolved in physiological saline, at a dose of 50 mg Kg -1 intravenously). At the end of the experiments the excess dye remaining in the gingival mucosal capillaries was removed by retrograde intra-aortic injection of isotonic saline solution. Gingival tissue samples were incubated in formamide (1 ml) for 48 h and then EB content was determined by spectrophotometry at 620 nm.

RESULTS
The average blood glucose concentration was 6.5 +/- 0.9 mM/L in the untreated control group at 1, 4 and 8 weeks. On the other hand, for the group of rats with CsA treatment, the values were 15 +/- 1.2; 17 +/- 1.1 and 21.6 +/- 1.6 mM/L at 1, 4 or 8 weeks treatment, respectively (P<0.001) (Table 1). Table 1 shows the collagen concentration in control rats: 2.5 +/- 0.5 ug OH proline/ mg p, compared to rats treated with CsA, which had 4.2 +/- 0.8; 5.9 +/- 0.6 and 7.3 +/- 0.8 (P<0.001). One, 4 or 8 weeks after CsA treatment there was a significant increase in EB extravasation in the gingival mucosal tissue (ug EB/g T). The average value for the control group was 10.3 +/- 1.2; while for the groups treated with CsA, average values were: 15 +/- 1; 17.2 +/- 1.3 and 22.1 +/- 2.1 (P<0.001) at 1, 4 or 8 weeks, respectively (Table 1). In rats with no prior treatment with CsA, the nitric oxide level in gingival tissue was 3.5 +/- 0.9 umol NO2/mg P, while the CsA treated rats at 1, 4 or 8 weeks showed marked nitric oxide levels, with values of 4 +/- 0.2; 8.2 +/- 0.9 and 11.2 +/- 1 respectively, (P<0.001) (Table 1).

Statistical Analysis
Data are expressed as mean +/- SEM and analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test. Values of P<0.05 were considered statistically significant.

DISCUSSION
The present study identifies and explores possible risk factors to both the prevalence and severity of drug-induced gingival overgrowth (GO) on gingival response associated to new-onset diabetes mellitus. Age has been reported as a risk factor for cyclosporine-induced GO19. Administration of CsA in rats for 60 and 120 days resulted in evident GO20. Diabetes increase levels of inflammatory markers C-
reactive protein, as well as the pro-inflammatory cytokines tumor necrosis factor-alpha and interleukin-6. Periodontal disease has been characterized as the sixth complication of diabetes mellitus and some diabetics are at increased risk of periodontitis. On the other hand, diabetic hyperglycemia is a systemic disease positively associated with attachment loss. In this study, we observed that the increased blood glucose concentration after CsA treatment at 1, 4 and 8 weeks produced significant changes in gingival tissue. The prevalence of GO in rats treated with CsA was significantly higher after 8 weeks of treatment. Gingival enlargement as a risk factor in kidney and liver transplant with other immunosuppressants treatment produced variable gingival response in patients taking these drugs. The occurrence of diabetes after organ transplantation is recognized as one of the metabolic consequences of therapy with CsA. Although the exact mechanisms involved in the developments of GO caused by CsA are not known, our results suggest that early hyperglycemia might induce local inflammation, which in turn might exacerbate CsA-induced GO in rats. A number of studies had investigated the direct effects of CsA on extracellular matrix synthesis by fibroblasts, in particular collagen metabolism. There is substantial evidence that this drug acts directly or indirectly on the growth and function of both gingival fibroblasts and collagen via cytokines and growth factors. In the present study, we showed that CsA caused marked gingival collagen accumulation after 1, 4 and 8 weeks of treatment. Current evidence indicates that the accumulation of collagen seen in GO could be explained by a CsA-induced inhibition of collagenolytic activity within the gingival tissue. After CsA administration, inducible and endothelial forms of nitric oxide synthase play a critical role in GO. The present investigation revealed that GO caused by CsA resulted in a marked increase in NO gingival tissue. Alterations in the pathogenesis of diabetic microangiopathy consist of increased capillary pressure, blood flow and endothelial permeability, and can be detected at an early stage of diabetes mellitus. Our results showed that CsA develops well-defined gingival capillary permeability that was evaluated in EB extravasation. Several mechanisms related to diabetic angiopathy could explain gingival capillary permeability: the early onset of diabetes due to CsA treatment, and local inflammation and TGF-1 as a key factor for the development of GO.

In conclusion, these findings appear to indicate that the development of significant gingival changes induced by CsA is related to new-onset diabetes mellitus during the immunosuppressive treatment.

ACKNOWLEDGEMENTS
We are especially grateful to Lic. Irene Di Martino for technical assistance and UAJFK for financial support.

REFERENCES


